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Absbaet. Racah coefficients of U,(n) are derived from subduction coe5cients of Hecke 
algebras H,(q) by using the Schur-Weyl duality relation between U,(n) and H (4). The 
Racah coefficients of U,(n) for the resulting irreps [n,,nZ,..-,nk, 61 with E+, nsG5, 
and some of them for the resulting imps with multiplicity and If-, n,56 are tabulated. 

i 

1. Introduction 

Quantized universal enveloping algebras [ 1-31, often referred to as quantum groups 
or quantum algebras, arise as underlying symmetries of integrable models [4] and 
conformal field theory [5]. The Racah-Wigner algebra plays a fundamental role in the 
representation theory of Lie algebras, and its importance to the representation theory 
of quantum group is expected in connection with IRF models in statistical mechanics 
[6] and the determination of new knot invariants [7]. The Racah coefficients are also 
related to the braiding and fusing matrices in the RCFT [5,8]. 

The Racah coefficients in the 6j symbol form of SU,(2) were first presented by 
Kirillov and Reshetikhin [9], and were then discussed by many authors using different 
methods [lo-151. Recently, some properties of the Racah coefficients for quantum 
groups were given in [16], in which 6j symbols for SUJ2) are used to illustrate the 
building-up method for calculating the coupling and recoupling coefficients. 

In this paper, based on the well known Schur-Weyl duality relation between U,(n) 
and Hf(q), a method for the evaluation of U,(n) Racah coefficients from subduction 
coefficients (SDCS) of the Hecke algebra Hf(q) will be outlined. F e  advantage of this 
method is that the calculation of the U,(n) Racah coefficients is rank-independent. 
The Racah coefficients of U,(??) for the resulting irreps [n,, n, ,  . . . , n,, 01 with 

ni s 5, and some, of them for the resulting irreps with multiplicity and 2f=l n, G6, 
will be tabulated. 

2. Evaluation of the U,(n) Racah coefficients 

The IJ,(n) Racah coefficients are simply a generaiization of the SU,(2) Racah 
coefficients, which are the elements of a unitary matrix between bases with two different 
coupling orders of three irreps ul. U, and 2)) of u,(n), 

I(1)IuZ)U1Z, 03; ;w)y = uq(%%m3; u12vZ3)::::'IuI(uZv3)uZ~; 6w)y' (2.1) 
D l l h  ,' 
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where four multiplicity labels appeared, 

t l 2  = L2, . . . , {VI,  UZUlZ} b 3  = 172, , . . 3 {u2u3%3} 
(2.2) 

The UJn) Racah coefficient can be expressed in terms of the U,(n) CG coefficients, 

t = 1,2,. . . , {u12u3u} t'= 1,2,. . . , {uIu23u}. 

u,(uluzvu3; ulzu23):g:~ 

= 1 C 4 2 f n W 1 2  m,w, ,"*&I) c:;;wt*,w3(q) c:?k2&(q)c:::, ,"23w23(q) (2.3a) 

where the summation is carried out for all possible component indices under the 
condition that w is fixed. Some U,(n) CO coefficients have already been derived in 
[23]. The Racah coefficients involve four triples of partitions: 

A ? \ ( ~ I ~ z ~ I z )  A(u2~3vz3) A ( ~ n u 3 ~ )  A( ul uZ3u). (2.36) 

A Racah coefficient is zero whenever one of the triple of partitions does not satisfy 
the generalized triangular relation decided by the Littlewood rule. The Racah 
coefficients satisfy the unitarity conditions 

fir w 

u q ( u l ~ 2 ~ ~ 3 ;  ~ I 2 ~ Z P ) ~ : ' : ' u q ( ~ I ~ 2 ~ ~ 3 ;  %2u23)?$ &,,p,,&p~v,,a,, 
"rr'rr 

1' 

c uq(uI~Zuu3; ~ 1 2 ~ 2 3 ) : ~ : ' U q ( ~ I ~ 2 ~ ~ ~ ;  vl7.%3)2~p'= ~t,,p,,&'p'&U~,~ 
(2.4) 

f l P I 2  , 
Formula (2.3) is not suitable for practical computation of the U,(n) Racah 

coefficients. However, there is an important relation, the so-called Schur-Weyl duality 
relation between the quantum group U,(n) and the Hecke algebra H,(q), which was 
first observed by Jimbo [3], and was also studied by many others [17-201. That is, the 
images of the Uq(n)  and H,(q) generators vary continuously with q ;  and the algebra 
H,(q) and U,(n) are commutants of one another in the tensor space (V")@c Hence, 
for generic q the structure of H,(q) can be determined from the information about 
H,(l)=CS,, which is the group algebra of the symmetric group S,; and a standard 
basis of H,(q) for an irrep [U] is also a special Gel'fand basis of U,(n) for the same 
irrep. Thus, from the analytical continuation for q, we can conclude that the Schur-Weyl 
duality between S, and U ( n )  applies to H,(q) and UJn) as well except that q is a 
root of unity. In the following, we always assume that q is generic. 

In the q = 1 case a formula relating the SU(n) Racah coefficients to the SDCS of 
symmetric groups was derived in [24,25]. After analytical continuaticn for q, the 
formula relating the U,(n) Racah coefficients to the SDCS of H,(q) can be expressed 
as 

uq(uluZ~%; U12UZ3):$ 
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where the summation is carried out under fixed m , ,  m2 and m,. Equation (2.5) can 
be used to evaluate the U,(n) Racah coefficients from the SDCS of the Hecke algebra 
H,(q). The SDCS of H,(q) with f s5 and some of them with f ==6 have already been 
obtained by using the linear equation method (LEM) [21].  The advantage of equation 
(2.5) is its being rank-independent. 

Due to equation (2.5) and the symmetry properties of Hf(q) SDCI given by [21] ,  
the Racah coefficients have the symmetry 

Uq(17,17217173; 17,21723);$,= qIu,(ulu2uu3; u12u23);$t (2.6a) 

where I7 is the conjugation of U. On the other hand, due to equation (2.3a) and the 
symmetry properties of CG coefficients of U,(n), the Racah coefficients of U,(n) have 
the symmetry 

uq(u3uZuuI; u23012)%::)= q2uq(vlv2uu3; UlZ%):$'. (2.6b) 

where the phase factors q,, q2 are equal to 

Ti = E d  U, 02  012 4 2 )  E ,  (012 03 ut)  Ei (02 U3 U23 t23) Ei (U1 U23 V?') ( 2 . 6 ~ )  

The phase convention used here is the same as that for the symmetric groups [25] .  
Notice that when the multiplicity is larger thm one, and the multiplicity separation is 
based on the ad hoc orthogonal  procedure, the symmetries (2.6) are in general not 
valid. Other properties of UJn) Racah coefficients, such as the Biedenharn-Eillot sum 
rule, and the Racah back-coupling rule, have already been given in [16] .  It should be 
pointed out that the conjugation always involves a change from q to q-' as noted in 
[16].  However, we can prove that the Racah coefficients of U,(n) are independent of 
q-factors. Hence 

for i = 1,2.  

uq (U1 0 2  003 ; 01 2023) ::::' = uq-'( U1 u2uu3 ; u12u23) izi'. (2.7) 

This can easily be seen from the following facts. First, the matrix elements #of U,(n) 
generators between the canonical and non-canonical bases of U,(n) are q-fa'ztor-free, 
which was first pointed out by Biedenharn [26] ,  and was verified by Jimbo 1271 and 
Ueno et al [ Z S ] .  Secondly, the U,(n) Racah coefficients can be expressed in terms of 
the SDCS of Hecke algebras, which are also the special SDCS of U,(m+n) 3 U,(m)@ 
U,(n); and the SDCS of U,(m+n)~U,(m)@U,(n) can be derived from the matrix 
elements of U,(n) generators between the canonical and non-canonical bases of U,(n) 
by using the results of [29,30] with q-continuation. Thus, the SDCS of Hecke algebras 
are also q-factor-free, which is verified by our early works [21,22].  This conclusion 
can be used to check our final results. 

3. Tables of U,(n) Racah coefficients 

In this section, we will tabulate UJn) Racah coefficients for the resultil>g irreps 
[nt,  %, . . . , nk ,  01 with L;=, n, SS, and -some of them for the resulting irreps with 

. multiplicity and 2f=l n j c 6 ,  which are derived by using equation (2.5) and the SDCS 

of Hecke algebras given by [21] .  Tables for the Racah coefficients (see the appendix) 
are arranged in the ordering of the set of irreps ( u , u 2 u q ;  u12u23). The tables have the 
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following layout: 

Table X-m. U = , v ,  = , vII= 

The entries are the squares of the Racah coefficients and a minus sign indicates a 
negative coefficient. If all us are totally symmetric or antisymmetric, the Racah 
coefficient is unity and not included. 

The Racah coefficients obey the symmetry (2.66), where the phase is given by 
v2 = +1 for multiplicity-free cases and for the cases involving the triple A([21][21][321] 
t = l), while q2= -1 for the cases involving the triple A([21][21][321]t =2) .  In these 
tables, we have defined two kinds of q-numbers, namely 

b l =  ( 4 x - 4 - x ) / ( 4 - 4 - L )  (3.1) 

[x]'=(q"/2- 4 -x/2)/(ql/2- 4 -1/2 ). (3.2) 

Only the Racah coefficients for ul S v3 are tabulated. The coefficients for U, > v3 

and 

[XI' appears when the Racah coefficients are non-multiplicity-free. 

can then be obtained from the symmetry (2.6b). For example, we have 

U,([211[21[32111~11; [321[211),,=2 

= -U,([1][21[3211[211; [211[321)'=2 

= ([312[51'/2r41[21~31")'~2 (3.3) 
from tables IV-b. Since we have used the symmetry imposition as given in [21] for 
[321]$[21] XI211 SDC~, our Racah coefficients do not obey the symmetry ( 6 . 6 ~ )  when 
they involve the triple A([21][21][321]t). For example, we have 

(3.4) 

from tables IV-b. 

4. Conclusions 

In this paper, we have given a method for evaluation of U,(n) Racah coefficients from 
the SDCS of Hecke algebras by using the Schur-Weyl duality relation between U,(n) 
and H,(q). The advantage of this method is that the calculation of the Racah coefficients 
is rank-independent. The Schur-Weyl duality relation also enable us to obtain CO 

coe5cients of U,(n) from induction coefficients (IDcr) of Hecke algebras [23]. At 
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present our calculation is based on generic q. The situation becomes more complicated 
when q is a root of unity, which, however, is of importance in some applications. We 
will discuss the root of unity case in the near future. 
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Appendix. Tables of V , ( n )  Racab coefficients 

Table I-la. U = [211, U, = [I], 4 2  =[Ill. Table 11-le u=[311, u,=[l], u,,=[21. 

~ 

Table 11-lb. u=[31], U,=[]], u,,=[I2]. 

Table 11-Id. u=[221, v,=[lI ,  ~ , ~ = [ l * l .  

[211 1 

. .  
Table 11-le. v = [211], D, = [l], U,%= 1.21. 

Table U&. u=[221, ul=[ll ,  ~ , ~ = [ 2 1 1 .  
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Table U-Ze. u=[21'], u,=[1], u,z=[13]. 

Table UI-la. u=[41], u,=[l] ,  u,,=[2]. Table 111-lb. u=[41], ul=[l], vlZ=[1']. 

Table 111-le u=[32], u,=[l], u,1=[2]. 

r11 r11 
[31 r211 

TableIII-Id. v = [ 3 2 ] ,  v1=[1], u,l=[~2]. 

Table 111-le. u=[3l21, v,=[lI, o,,=[ZI Table 111-1L U =[3l2I. uI =[1], qZ= 113, 

Table Ut-lg. 0=[221], v,=[l]. vtt=[2]. 

E11 
[211 

Tablem-lb. u=IZ2l], u,=[l], ~ , ~ = [ 1 ~ ] .  

Table 111-li. u=[213], u,=[l], u12=[2]. 

r11 
[PI 

TableIU-lj. u=[41], u,=[l], u,,=[3]. 
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Table III-2% u=[41], u,=[l], u,*=[3]. 

Table III-tC u=[32], u,=[f], 0,~=[3]. 

P I  
121 

~~ ~~ 

Table III-2d. u=[32], u,=[l]. ~ , ~ = [ 3 ] .  

Table III-Ze. U = [31’1, U, = [l], utZ = [31. 

Dl 
[1*1 

TableIII-2g. u=[3l21, U, = [l], o , ~ =  [l’l. 

Table III-2h. u=[Z’ll, 0,=[11, u,,=[21]. 

Table 111-3s. u=[41], ul=[l], ~ !~=[31] .  

[31 1211 
Dl U1 
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Table IIIJb. u=[411, u l = [ l l ,  ul2=[41. 

131 
tll 

Table III-3.z u=[321, u,=[l], v,,=[311. 

Table III-3d. U = [321. u1 = [l], vt2 = [2'1. Table III-3e. v = [3121, u1 = [ll, u12 = I311. 

Table III-3f. u=[31I2, u,=[I], ut2= 
[217. 

Table II1-3h u=[2'1], u ,=[l l ,  u12= 
[212]. 

Table m-3j. U = [2131, U, = [I], uI1 = [141. 

[i31 
[11 

Tnble III-ia. U = [41], ut = [Z], uI1= [31. 

[31 1 
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Table 1114d. u=[32], v,=[2], uI2=[3], Table III4e. U = [321,’u, = [Z], U,* = [21]. 

TableIII4f. u=[32], ul=[12], u,,=[21]. 

r11 U1 
1-21 [121 

Table 11r4h. u=[31*], u,=[2], U,*= 

1211. 

Table 1114%. u=[31*]. u,=[2], ~ ~ ~ = [ 3 ] .  

Table IU4L n = [31’1, U, = [l‘], u , ~  = 
r-211. 

TableIII4j. u=[3l21, u,=[l’l, U,~=[I’I 
Table III4k. u=[Zzl], u,=[Z], U,?= 

[211. 

Table III-41. ~ = [ 2 ~ 1 ] ,  ul=[121, uIz= 
mi. 

[i31 1 

Table III4m. U = [Z21], U, = [l’], U,*= 

- r13. 

Dl 
[ 121 

Table 11140. u=[213], u,=[12], uI1= 
L-211. 
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Table 111-4~. u=[2l3I, ul=1l2], wl2=  Table IV-a u=[3211, 0,=[11, ~ , ~ = [ 3 ] .  
11’1. 

Table IV-b. u=[3211, u,=[l], ~ ,~=[211.  

Table Ws. U = [3211, u, = Ill, u , ~  = [l’l. 

[121 
I211 

Table Wd. u=[321], u,=[l], ~,~=[2‘]. 

1211 r211 
I21 D21 

Table IV-f. u=[3211, u,=[l l ,  u,,=[2lz1. 
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TableN-g. u=[321], u,=[2], DI;=[~I]. 

1 2 

0 

Table N-h. v=[3211, ul=[l21,  ut2=[211. 

, 
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